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Numerical solution of the complete Navier-Stokes equations currently is very difficult 
because there is no effective computational algorithm, especially in the region of large 
Reynolds numbers. Therefore various simplified models of the Navier-Stokes equations have 
found wide use [1-3]. There is practical interest in calculating the flow field and the 
heat transfer near a blunt body in the presence of a large nonuniformity in the incident 
flow, which in many cases leads to the development of local detached zones on the windward 
part of the body. Data from experimental and theoretical investigations of the resistance, 
the heat transfer, and the gas-dynamic behavior of the flow have been studied [4] where one 
of the bodies is in a supersonic flow behind the other Numerical calculations of continuous 
supersonic viscous flow around blunt bodies were generalized within the framework of the 
theory of a supersonic viscous shock layer both with and without the flow of material from 
the surface. The problem of continuous flow around a blunt body at moderate Reynolds num- 
bers (Re~ ~ 103 ) was solved asymptotically [5]; expressions were given for the heat transfer 
coefficient and the friction, and a criterion was presented for attached flow. 

Equations for the complete viscous shock layer, first obtained in [6], describe the 
flow in the shock layer to second-order in the reciprocal square root of the characteristic 
Re~. A multistep procedure in solving the boundary problem of the complete viscous shock 
layer was first used in [7]. A numerical global-iteration method was presented [8] in detail 
to solve the complete stationary equations for the viscous shock layer; the method reduces to 
a multistep procedure in which the form of the shock wave and the pressure field are refined 
in each iteration. 

The system of equations for the supersonic viscous shock layer has a parabolic form. 
However, the problem retains a boundary character because of the unkown shape of the shock 
wave. If the shape of the discontinuity is considered known (for example, it coincides with 
the shape of the body), then the boundary problem can be solved with given initial conditions 
with a single-step procedure. Here we examine such an approach for the supersonic viscous 
shock layer equations. Another approach [I0], with a refined shape of the shock wave, uses 
equations for a thin viscous shock layer in the case of a uniform incident flow. 

Here a global iteration method [8] is used to calculate a continuous supersonic flow 
of a perfect flow around an axisymmetric blunt body. We study the suitability of the simpli- 
fied Navier-Stokes equations [1-3] to describe the behavior of the continuous flow near the 
blunt body. The critical values of the nonuniformityparameters are refined, for which a 
transition occurs to a detached flow regime. 

Numerical results, which were found in the framework of equations for the complete vis- 
cous shock layer, are compared with results of an earlier solution to the complete Navier- 
Stokes equations. The calculations are performed for a sphere for Mach numbers M~ ~ 6 and 
102 _< Re= ! 105 , with a consideration of slippage both at the discontinuity and on the 
surface of the body. 

I. FORMULATION OF THE PROBLEM AND DESCRIPTION 
OF THE NL~ERICAL SOLUTION METHOD 

We will examine the stationary continuous supersonic flow of a viscous perfect gas around 
a smooth blunt body. The profiles of parameters in the incident flow are written in a 
dimensionless form [4, ii] 
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V l(r)  = 1 - -  a exp ( - -  br~), Pl (r) = (] ,ML) -1 ,  

9~(r) --  B / ( t  + C { t  + V ~ ( I - -  a ) -2}) ,  B = t + C {l + ( l - - a ) - ~ } .  

Here rR0 is the distance to the axis of symmetry (R 0 is the radius of curvature of the body 

at the critical point); VIVa, PlP~, and pzp~V~ are the velocity, density, and pressure in the 

incident flow; and Moo, V=, and p~ are the Mach number, the dimensional velocity, and the di- 

mensional density for r + ~. The parameters a, b, and C are determined by the degree of 
discontinuity of the incident flow. We examine the case of moderate and large values of 
Re= = p=V~R0/~ (B~ is the viscosity in the incident flow) and large values of Fgo: Re~ > 10 2 , 

M~ > 6, and D~ = ]/(Too). 

An important paraneter for supersonic flow around blunt bodies is the temperature of 
adiabatic damping: T o = T=[I + (7 - i) 0.5M~], which determines the viscosity coefficient 

typical of a flow field in the neighborhood of the critical point. The typical Reynolds 
number for the problem is computed from the formula Re s = p=V~R0/Ds (Ps = P(T0))" The param- 

eter of viscous hyperbolic similarity, ~ = Rest/2, is a measure of the boundary layer thick- 

ness, which is of order e, and also of the shock wave - 0(~ 2) in the limiting case of in- 

finitely large M~ and Re=. 

Vasil'evskii and Tirskii [8] give the stationary two-dimensional system of equations for 
the complete viscous shock layer in terms of variables related to the body surface. We go to 
new independent variables $ and n and to new flow functions 

y 
- 

= x ,  ~ = ~  pTdy, r = r / r w = l +  yr176 
r$o 

0 

Ys 

h = ~ ~ dy, / = ~p (2~pooV~r~h cos a)  - 1  
0 

where xR0 and yR0 are the corodinates along and normal to the body surface; rwR 0 is the dis- 
tance from the axis of symmetry to the body contour; ~ is the inclination angle of the body 
contour to the axis of symmetry, and Ys is the tail of the shock wave. The system of equa- 
tions in terms of the variables ~ and ~ is presented in [8]. We will limit ourselves to 
deriving the boundary conditions at the shock wave more exactly. For moderately small 
values of Re=, the shock wave is smeared, so the structure of the transition region through 
the shock wave must be analyzed. If the discontinuity is small enough with respect to the 
shock layer, then this analysis can be omitted to simplify the Navier-Stokes equations, and 
the boundary conditions at the jump can be replaced by the generalized Rankine-Hugoniot rela- 
tions which consider the slippage at the discontinuity [9]. In the nonuniform case, the 
boundary conditions are derived as in [7-9]. We omit the derivation and write the final 
formulas in the variables ~ and N for N = i: 

r176 ~ "c~ gs dV1 --_ O, Ou 
C 1 ~ + u + ( l  ~ ks) C 2 cos o~ - -  V 1 cos cr R%oplV 1 sin 1~ dr 

v ,  = ( v M i )  + (1 - -  p y l  

IxPr c~ ~s sin 13. sin I~s 
C l = A R % o p l V l s i n ~ '  C ~ =  coszr " 

Ho ~-~ C~To ' ks Pl ? - -  1 2 
= o--:= ~ + f  + (,~+ ~ l) P~VIMr r sin ~ ~' 
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Here V~u cosa and -V~v are the components of the velocity vector along the x and y axes; 
P~V~2P, ToT, P0~, and X, are the pressure, temperature, viscosity coefficient, and thermal 
conductivity of the gas; HH0 is the total enthalpy, ~ = Cp/Cv; Pr = 0.71 is the Prandtl num- 

ber; $ is the angle between the tangent to the shock wave surface and the axis of symmetry; 
the subscript s indicates parameters at the discontinuity. 

In the general case of injection of gas from the surface of the body for q = 0, we use 
the condition 

r w 

Q% ft Pwvw dr2w 
. = h o ,  /w ---- 2A cos a '  __~ sin (z 

w 0 

where fw is the flow function, and subscript w denotes parameter values on the body. In the 
case of moderately small Reynolds numbers (Re~ = 30-100), we consider slippage along the 
surface of the body and the temperature jump [7], which in terms of the variables q and $ 
has the form 

Ou A ~U)~ 
U ~ Re ,x  ' A 

H = h.. + r ~ C  H - -  ,, ~ ] + , ~ W l / 2 ~ o .  ~ COS 2 (Z. 

According to [7], az = 1.2304 and b I = 2.3071. The output A from the discontinuity in terms 
of the new variables is determined from the mass balance condition: 

where 

A = 
(t -{- F -{- Q) r w 

(fs - -  Ira -- I) 2 c0sa t 

1 

I =" Y T ;  F(r,) B ( i - - a ) ' l n A ;  
2bCr~ o 

A =  %__Wo % -  w l  %-111%-7-4-w7 % § we I%+t; 

r. = r~ § y~ cos o~; W1 = V~(r~); Wo = I - -  a; ao 

x ]f(l  + O/C. 

= (1 - a )  x 

We also make use of the geometric relationship 

1 dY8 
t g f L  = ~ T x ,  HI~ = 1 + •  

where K i s  t h e  c u r v a t u r e  o f  t h e  body c o n t o u r .  

Formulas  f rom [8] and [12] a r e  u sed  as  t h e  i n i t i a l  a p p r o x i m a t i o n  f o r  t h e  shape  o f  t h e  
shock wave 

(r ) 2 D  - -  t 
t g ~ s = D  tg ~ +  D~ t g a  , 

R s  o O = ~ ,  Hl~0 = I + y, (0)/Ro 

or in a clearer form 

1,05 q- t,65kso 
D = 2 (l + 0,78ks0 )' k~0 = P~/P~0. 
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The calculations were conducted over a wide range of parameters for the incident flow: 
M~ >16 ; 30 ! Re~ ! 106; 0.01 ! Tw ! i; and fw = 0. In most cases b = 7.2; C = 3.0; the 

parameter a is examined in the interval 0 ! a ! acr, where acr (b, C, Moo, Re=, T w) is the 

critical value at which detached flow occurs in the shock layer at any part of the body. 
Calculations were performed on nonuniform grids. Up to 30 nodes of the grid were specified 
perpendicular to the shock layer, depending on Re. Approximately half of these points were 
in the boundary layer. For flow around the sphere, 24 intervals were examined along the 
longitudinal coordinate ~ with extra intervals near the critical point. The minimum step 

in the central angle 0 was around 2 ~ . 

The numerical solution made use of a method with enhanced accuracy, analogous to the 
one in [13]. The nonuniform case was calculated as follows. The nonuniformity parameters 
b and C were fixed, but a was assigned a step (usually 0.005 or 0.01). The uniform case 
(a = 0) was calculated to convergence. Then a was increased by the step value and global 
iterations were repeated to convergence. Afterwards a again was increased and the process 
was repeated. Here the form f the shock wave and the pressure gradient distribution for a 
smaller a were used as initial approximations to obtain the solution. The total calculation 
was conducted to the maximum possible value of a. Each new value of a required 10-15 global 
iterations for a step of 0.01 and 5-8 iterations for a step of 0.005. 
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After the difference equations were solved, the distribution of the thermal flux qw 
(relative to p~V=H0) and the coefficient of frictions Cf With the friction force relative 
to 0.Sp=V~) were determined from the formulas 

~p ON 2 cos g~p  0~ 
q~=V~ne~On 01=0), Ci= R~o~ o~ 01--0), 

2. CALCULATED NONUNIFORM SUPERSONIC FLOW AROUND A SPHERE 

We examine the calculated results of the local thermal and dynamic characteristics for 
laminar flow around a sphere. 

Figures 1 and 2 compare data obtained from the complete viscous shock layer (solid 
curves) and the complete Navier-Stokes equations [14] (dashed curves) for flow around a 
cooled sphere. The results are presented in terms of the dimensionless variables used in 
[14]; s is the dimensionless coordinate along the surface of the body. Ahead of the shock 
wave at the axis of symmetry, M0 = 6, and Re 0 = 177. The temperature factor, defined as the 
ratio Tw/T0, has a value of 0.15; b = 7.2; C = 3.0; Pr = 0.7; the viscosity coefficient is 
determined from the power law D ~ /T; and the ratio of specific heats y = 1.4. Figures 1 
and 2 compare the distributions of the thermal flux coefficient qw/~e0 and the friction 
CfR~e 0. The maximum difference in the nonuniform case between the solid and dashed curves 
of the thermal flux is 3%, and less than 5% for the friction. Also, Golovachev and Leont'eva 
[14] show that the results are presented on the friction and the thermal flow have an 
accuracy near 5%. We compared the value of qw R~e0, calculated from the model of the complete 
viscous shock layer, versus Re 0 with calculations for the complete Navier-Stokes equations 
[15] for e = 0 and 30 ~ . We found that as Re 0 increased, the agreement worsened somewhat with 
increasing a, which is explained by the closeness of the nonuniformity parameters to their 
critical values. However the maximum difference in the curves for the critical Re values 
does not exceed 9%. The results show that the basic aerodynamic characteristics (the thermal 
flow and friction), which are determined by the complete viscous shock layer model, have 
satisfactory accuracy over the whole investigated range of nonuniformity parameters. 

Figures 3 and 4 compare data obtained from equations for the complete viscous shock 
layer (solid and dot-dash curves) and equations for the supersonic viscous shock layer [4] 
(dashed curves) for M~ = 20, Pr = 0.7, y = 1.4, and T w = 0.i. Figure 3 shows the thermal 
flow and friction in the uniform case (a = 0) for Re~ = 104, and Fig. 4 for nonuniform flow 
(a = 0.4 and Re~ = 102). The solid curves correspond to a calculation that considers slip- 
page effects at the discontinuity and the sticking conditions at the surface of the body. 
For Re= = 102 , the calculations were conducted with slippage effects both at the discontinuity 
and at the surface of the body (this curve is not shown to avoid complicating the figure) 
and without considering these effects (dot-dash curves). Comparison of the calculations 
using the supersonic model (slippage only at the discontinuity) with those using the com- 
plete model shows that for a uniform incident flow the difference in the thermal flux near 
the critical point (approximately to 30 ~ ) does not exceed 5-8% for all Re values. The 
agreement in the friction coefficient is somewhat better at small Re and worse at large 
values and becomes much worse in the nonuniform case. The thermal flow is reduced by 35% 
at the critical point for the supersonic model for Re~ = 102 and by 20% for Re~ = 104 . The 
agreement improves somewhat on part of the side surface of the sphere (approximately at 30~ 
The difference in the friction coefficient is also large in the nonuniform case (it is almost 
20% for example, at Re~ = i0 ~ for the maximum values of the friction coefficient). 

Slippage effects at the discontinuity (Figs. 3 and 4) are much larger for friction and 
the thermal flow than for slippage and the temperature jump at the surface. Calculations 
without slippage effects lead to doubled values of the thermal flow at the critical point, 
and the friction coefficient is increased by 30% (Figs. 3 and 4). With slippage only at the 
discontinuity, the thermal flow increases by 17% and the friction coefficient by 10%. 
Evaluations close to these are also obtained in [7] for uniform flow. From Figs. 3 and 4 
it can be seen that slippage effects at the discontinuity appear basically near the critical 
point, where the temperature behind the discontinuity is close to the deceleration tempera- 
ture. The effects of slippage at the surface occur all over the sphere. In the nonuniform 
case (Fig. 4) they are approximately the same as in the uniform case (Fig. 3). 

Figure 5 shows the acr versus Re~ for parameter values corresponding to Fig. 3. Curve 
1 is the calculation from the complete viscous shock layer model with slippage at the surface 
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and an arbitrary temperature 0.i iT w ! i; the solid curves 2 and 3 are the calculation using 
the total model with sticking conditions for T w = 0.i and 0.3; the dashed curves 2 and 3 are 
the corresponding calculations for the supersonic model, which give somewhat reduced values 
of acr over the whole range of Re values. At large Re values, the function acr(Re~ ) becomes 
constant. Considering the sticking conditions (curves 2 and 3) leads to a branching of the 
curves as a function of the wall temperature and a nonmonotonic behavior of acr(Re~) in the 
range of small Re= [4]. The calculation with slippage conditions at the surface does not 
display that splitting, and acr grows monotonically as Re decreases (curve i). We note that 
for Re < 102 and M~ ~ 20, the Knudsen number becomes of order i, and application of the equa- 
tions of continuum mechanics requires additional research. Therefore the results for small 
Re= in Fig. 5 must be considered qualitative and require refinement in the transition region 
to the rarefied gas model. Comparison of the solid curves 1-3 shows that, as the wall is 
cooled, the influence of slippage at the surface decreases, which agrees with the estimates 
[9] for uniform flow. 

The authors express thanks to G. A. Tirski{ and S. A~ Yunitski{ for useful discussion 
of the results. 
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